
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Auditing Personalized Recommendation Algorithms Through Spontaneous
Click-Based User Interaction

QUNFANG WU, University of North Carolina at Chapel Hill, USA

ZITONG HUANG, Syracuse University, USA

YAQI ZHANG, Syracuse University, USA

CHUNG-CHIN EUGENE LIU, Syracuse University, USA

Algorithms are powerful in managing people’s online activities and have the potential to reshape their needs and usage patterns.
Our project aims to explore how users navigate personalized recommendation algorithms through daily interaction with the system.
Focusing on Xiaohongshu, a Chinese lifestyle-sharing community with a highly effective content recommendation algorithm, we
conducted semi-structured interviews with 14 users. The preliminary interview study found that users considered “click” as a
continuous and adaptive way to train algorithms about their preferences, and a more precise way than other approaches, such as
search; additionally, non-click was regarded as a deliberate choice made to avoid receiving unwanted content recommendations. The
findings underscore the significance of click as a primary interaction between users and algorithmic systems and offer suggestions for
click-based algorithm auditing. We discuss the future work and challenges in user auditing.
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1 BACKGROUND

Ariela is a Chinese undergraduate student studying at the School of Architecture who regularly collects design references
from other designers on social media platforms. In addition, she browses topics related to her daily life and internships.
Ariela normally uses three websites, namely Pinterest, Instagram, and Xiaohongshu (a Chinese community-sharing
mobile application). Ariela benefits from the personalized recommendation algorithms of these platforms, which can
continuously push similar content that interests her. For Ariela, Pinterest offers rich architectural design references,
Instagram is more focused on socializing and daily life, while Xiaohongshu offers both and provides more diverse
inspiration for her major through its nuanced algorithmic recommendation.

Just like Ariela, we consume rich online content brought by personalized recommendations. Almost every social
media platform uses algorithms to provide users with optimized recommendation services [12].The mechanism behind
personalized recommendations is to record users’ usage behaviors (e.g., clicks, viewing time, friend lists, likes, and
favorites) to create a profile for each user, based on which content that users are interested in can be pushed to them [27].
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Algorithms have penetrated into both the online and offline activities of people, potentially changing their needs and
patterns of technology usage. This phenomenon has been reflected in the HCI and CSCW communities, which have
increasingly highlighted the impacts of algorithms on users, as seen in recent research on users’ understanding and
needs of algorithms [6, 22], resistance to algorithms [18, 26], and user-driven auditing of algorithms [1, 16]. The existing
literature has indicated users’ potential to reshape the design of algorithm-equipped systems. To explore future shifts
of interface design, our study began with two broader inquiries: how do users navigate personalized recommendation

algorithms and whether can these interactions suggest any algorithm auditing methods? We found that users were
more aware of the click interaction when navigating personalized recommendation algorithms and documented the
algorithm reactions under different click patterns. This position paper reports the preliminary findings and discusses
the opportunities and challenges of click-based user algorithm auditing in the future.

2 RELATEDWORK

2.1 Evolution of Click: From User Interface to Personalized Recommendation

In its original definition, click refers to a user’s action of pressing a button on a computer interface using a mouse. For
instance, in a user interface, clicking on hyperlinks allows users to navigate from page to page. Although click may
seem commonplace now, it was a focal point in user interface design at the time [23, 30]. The well-known Fitts’s law
has been utilized to assess the performance of click (and point) [29]. While HCI has advanced beyond the use of mice
(such as taps on the screen and voice commands), click remains the term used to refer to the command on an element
in a user interface.

When search engines emerged, click was endowed with more meaning related to “user intent.” Scholars attempted to
analyze users’ click behavior under search queries [28, 32] to optimize the ranking algorithms of search engines. For
commercial search engines, the number of clicks on ads has become the primary indicator of revenue [19]. Because
of the economic motivation, numerous studies have explored how to predict ad clicks more accurately in search
engines [17, 23]. As we entered the era of social media, the number of clicks is still an important metric to measure
platform user activity and profitability. However, there was more vibrant content that could be used to predict user
click behavior, such as the user’s friend networks [8], posts [20], likes [5, 14], and bookmarks [21]. As TikTok and other
equivalent platforms have achieved personalized recommendations to the point that users feel that the algorithms are
“spying” on their thoughts, users have become aware that their clicks matter a lot to their online experiences [8]. Next,
we review how users perceive and react to algorithms, particularly personalized recommendation algorithms.

2.2 User Engagement As a Means of Algorithm Auditing

Algorithmic systems refer to systems that rely on algorithms to provide services or governance, for example, rec-
ommendation systems, social media feeds, and data-driven decision support. Bishop contended that there were two
main approaches in research on algorithmic systems, with one focusing on how algorithms are constructed and the
other examining users’ everyday interactions with algorithms [3]. The first approach applied auditing tools such as
sock-puppets or browser extensions to unpack recommendation algorithms [1, 10, 13, 16]. However, this approach
usually requires computational skill sets and narrows down the scope to technical aspects of algorithmic systems, thus
falling into the trap of “technological solutionism” [9, 24].

The second approach attempted to understand users’ needs and usage in algorithmic systems. Through interviews, Lee
and colleagues’ work emphasized the importance of personalization processes accurately reflecting users’ multifaceted
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(a) The main page: “Explore” (b) Post reporting options (c) Customizable interest channels

Fig. 1. The Xiaohongshu mobile application interface. (a) is the main page of Xiaohongshu, which displays a selection of posts known
as “notes” by the algorithm, consisting of both picture and video posts; (b) the available options for reporting a post, including
“Not interested” and “Content feedback”; (c) presents the customizable channels or tags that users can create for their personalized
preferences. Despite the space constraints, it is worth mentioning that other functions, such as search, following, and collection of
savings, are also available.

and dynamic identity [22]. Bucher conducted a case study and highlighted the impacts of YouTube’s recommendation
algorithm on content creators’ strategies to gain visibility [4]. Overall, the works suggested that users navigated
the algorithmic power and regained control of their experience as users. Additionally, some research attempted to
challenge algorithmic systems to perpetuate inequalities and injustices [2, 18, 26]. For example, users used posting
and clicking to manipulate their online identities (e.g., gender, race) to circumvent harmful algorithms in TikTok [18].
Yu et al. explored the use of gamification features by food delivery platforms to optimize labor value and how riders
developed resistance strategies through WeChat groups, which served as hidden transcripts of resistance [31]. The
existing research illustrates the importance of understanding user behaviors when engaging in algorithms and the
great potential of user engagement in algorithm auditing.

3 PRELIMINARYWORK: PILOT INTERVIEW STUDY

The preliminary work took the first step to explore how users navigate personalized recommendation algorithms
through their interaction with the algorithmic system, especially through users’ click behavior. We chose Xiaohongshu
(meaning “Little Red Book”) as the research site. Xiaohongshu is a lifestyle-sharing community and an e-commerce
platform that has become increasingly popular in China. Xiaohongshu has deployed a powerful content recommendation
algorithm. The algorithm can recommend diverse content to users based on the user’s browsing history, social networks,
and others [15]. Figure 1 demonstrates the main features of Xiaohongshu.

We conducted semi-structured interviews with 14 Xiaohongshu users. We recruited participants based on the
eligibility criteria that included anyone who has used Xiaohongshu and is 18 years or older. More demographic
characteristics of the participants are presented in Appendix. Each interview lasted 40 to 60minutes, andwe utilized video
conferencing tools to facilitate the interviews. Participants received a compensation of 20 Yuan RMB (approximately
$2.79) for the full completion of the interview. The interview questions explored various aspects of participants’
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Xiaohongshu usage, including their posting, liking, saving, and reposting behaviors, the content they are interested
in, their understanding of and attitudes toward the platform’s algorithm, their resistance strategies for avoiding the
negative impacts of the algorithm, and the overall suggestions to the design of the platform. The study was approved by
the Institutional Review Board of Syracuse University. The data analysis was conducted by the first three researchers
utilizing an inductive analysis approach derived from grounded theory [11]. The team found the “click” phenomenon
prominent among the themes and further applied an axial coding method [7] to generate three primary themes around
“click.”

We found that users regarded click as a continuous and adaptive way to navigate algorithms about their fuzzy
and ever-changing needs and a more precise action than other approaches (e.g., search) as they served as a final
confirmation; importantly, non-click was considered an intentional choice to avoid unwanted recommendations.
Specifically, users’ needs are diverse and ever-changing, which are recognized through the continuous interaction with
content recommended by algorithms. Click, as the most fundamental and common action, is a continuous and adaptive
way for users to explore their needs and help the algorithm understand their needs. In addition to click, participants
also reported other ways through which they could impart their preferences to the algorithm, such as search queries,
interest tags, follows, likes, saves, and reports. Nevertheless, participants reflected that click represented a more precise
and sensitive modality than the others. For example, P07 showed a case that the algorithmic recommendation based on
a historical search resulted in irrelevant or useless information

Interestingly, non-click, the opposite act of click, is also a conscious choice made by users when engaging with
algorithmic recommendations. Participants reported that they were keenly aware of what they did not click on, knowing
that every click would be recorded by the algorithm and could result in changes to future recommendations. “Mis-clicks”
carry a higher cost in recommendations supported by algorithms than those not. For instance, P05, P06, P08, and P11
expressed concerns about accidentally clicking on the wrong posts. P06 described that one day, he clicked on a post out
of curiosity, but later the algorithm kept sending him repeated information based on that misclick, which bothered him.

4 DISCUSSION

4.1 Click With Awareness: Auditing Recommendation Algorithms

The interview study emphasized the importance of click-based interactions between users and algorithms for a more
seamless and efficient user experience in personalized recommendations. Participants reported infrequently customizing
their interest channels, suggesting their interests are ever-changing and challenging to define at any given moment.
Furthermore, participants perceived click-based interactions to be more precise and sensitive than other actions, such
as search and post reports. However, these perceptions are limited to the study’s participants.

The pilot study also highlighted the significance of non-click options as an intentional choice for participants.
Neglecting non-click options can misunderstand users’ preferences and hinder usability. For example, TikTok’s scrolling
feature eliminates both click and non-click options, which are conscious decision-making processes for users [25].

4.2 Future Work and Challenges

The findings suggest that users were more attentive to the click interaction when navigating personalized recommenda-
tion algorithms. Users adapted their clicking behaviors and documented the outcomes of various click patterns. This
points toward the potential of click-based interactions serving as a means for users to audit algorithms. In the future,
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we plan to continue testing users’ click engagement on a large scale and explore the possibility of auditing algorithms
based on users’ clicks. For example, we want to inquire:

• To what extent users’ clicks can impact algorithms and whether these impacts are stable and predictable;
• Whether the click interaction can be recorded or collected by auditing tools and whether the platform allows

for this;
• How to address unconscious and random clicks.

These questions pose challenges for future research and merit further exploration.
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A APPENDIX

Table 1. Demographic Information (i.e., age, gender, education background, and occupation) and Duration of Xiaohongshu Use
Reported by Participants

No. Age Gender Education Occupation App Usage

P01 18-25 Male Bachelor Salesperson > 4 years
P02 18-25 Female Bachelor Student > 4 years
P03 26-35 Female Bachelor Administrative staff 3 years
P04 18-25 Male Bachelor Student 3 years
P05 18-25 Female Bachelor Student 4 years
P06 18-25 Female Bachelor Student > 4 years
P07 18-25 Female Bachelor Student 2 years
P08 18-25 Female Bachelor Student 4 years
P09 18-25 Female Bachelor Professional < 1 year
P10 18-25 Male Bachelor Salesperson 3 years
P11 18-25 Female Master Student 1 year
P12 18-25 Female Bachelor Other 3 years
P13 18-25 Female Master Student > 4 years
P14 18-25 Female Bachelor Student 2 years
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