
GPTutor: an open-source AI pair programming tool alternative to
Copilot

Eason Chen
eason.tw.chen@gmail.com
Carnegie Mellon University

Ray Huang
Bucket Protocol

Justa Liang
Bucket Protocol

Damien Chen
Bucket Protocol

Pierce Hung
Bucket Protocol

Figure 1: GPTutor’s user interface and it’s annotation

ABSTRACT
The emergence of Large Language Models (LLMs) has improved
software development efficiency, but their performance can be
hindered by training data limitations and prompt design issues.
Existing LLM development tools often operate as black boxes, with
users unable to view the prompts used and unable to improve per-
formance by correcting prompts when errors occur. To address
this, GPTutor was introduced as an open-source AI pair program-
ming tool, offering an alternative to Copilot. GPTutor empowers
users to customize prompts for various programming languages
and scenarios, with support for 120+ human languages and 50+
programming languages. Users can fine-tune prompts to correct
the errors from LLM for precision and efficient code generation. At
the end of the paper, we underscore GPTutor’s potential through ex-
amples, including demonstrating its proficiency in interpreting and
generating Sui-Move, a newly introduced smart contract language,
using prompt engineering.

CCS CONCEPTS
• Human-centered computing → Open source software; •
Computing methodologies → Natural language generation;
• Applied computing → Education; • Software and its engi-
neering→ Programming by example.

KEYWORDS
AI Pair Programming, Large Language Models, Prompt Engineering

1 INTRODUCTION
Thanks to Large Language Models [1], the efficiency of modern
software engineers in developing programs has significantly im-
proved. Software engineers frequently employ various AI tools to
assist development, such as Copilot, CodeX and ChatGPT. These
tools are primarily used for two key purposes: code explanation and
generation[4]. "Code Explanation" pertains to providing clear and
understandable explanations for given sections of code. "Code gen-
eration" refers to AI generating the corresponding code based on



Eason Chen, Ray Huang, Justa Liang, Damien Chen, and Pierce Hung

Figure 2: Examples for using GPTutor for Explain, Comment, and Code Review on a Move code snips

developer instructions or code. For example, AI may generates the
remaining incomplete portions of code based on the code already
written by the developer.

These AI tools are generally effective in handling most scenar-
ios [5]. Nevertheless, it’s important to note that large language
models such as ChatGPT are only equipped with knowledge up to
2021. As a result, developers might face challenges when dealing
with recently introduced programming languages or libraries. For
example, introduced in 2022, Sui-Network uses Sui-Move as the
programming language for its smart contract logic. AI tools are
unfamiliar with the Sui-Move language and are therefore limited
in their ability to assist in its development.

Fortunately, prompt Engineering can easily address these issues.
For instance, users can provide background in the prompt, such as
mentioning that "Move language has syntax similar to Rust", before

asking ChatGPT to explain Move code. With this context, ChatGPT
can effectively explain Move code. Furthermore, by providing Move
examples in the prompt accordingly, ChatGPT can successfully
generate or modify Move smart contracts.

Unfortunately, development tools like Copilot are black boxes,
lacking the flexibility to customize prompts or correct errors as per
one’s requirements [5]. Moreover, pasting code into ChatGPT and
selecting the appropriate prompt can be quite cumbersome. This is
why we are building GPTutor, an open-source AI pair programming
tool that aims to be an alternative to Copilot.

2 SERVICE DESIGN
With GPTutor, users can customize their prompts for various pro-
gramming languages and development scenarios and easily switch
between different prompts as needed (Figure 1). For example, as



GPTutor: an open-source AI pair programming tool alternative to Copilot

Figure 3: Example of using GPTutor to change to button CSS styles with instructions.

shown in Figure 2, developers can set up prompts for GPTutor to
explain Move, generate comments for Move code, and even perform
code review for their Move smart contract.

Leveraging the capabilities of GPT-3.5 and GPT-4, GPTutor offers
supports for customized Prompts in LangChain Template format.
Notably, GPTutor not only supports inputting code from the active
window as the prompt, but it can also pick the source code behind
the function chosen by the user as a prompt. By these kinds of
in-depth analyses, GPTutor can generate even more precise outputs
than using vanilla ChatGPT and Copilot[2].

Please check this demo video for functions of GPTutor. While
utilizing GPTutor, the prompts it employs are completely transpar-
ent. Users can easily view the current prompt with a single click
and instantly edit to see how different prompts can produce vary-
ing output. If users are satisfied with the changes, they can save
the modified prompt in the configuration as personalized prompts.
Finally, users are encouraged to submit Pull Requests to share the
prompts they’ve used to improve the overall GPTutor Community.

3 CURRENT PROGRESS
Currently, GPTutor is available at the Visual Studio Code Exten-
sion marketplace with over a thousand downloads 1. Users can use
it with their own OpenAI API Key. GPTutor supports input and

1GPTutor Download Link: https://marketplace.visualstudio.com/items?itemName=
gptutor.gptutor

output in over 120 human languages and supports more than fifty
programming languages. Users can customize GPTutor’s prompts
for specific languages to obtain more precise explanations or gen-
erations. For example, as shown in Figure 3 users can specify what
CSS library and themes they want to use and then ask the GPTutor
to rewrite the HTML classes to fit the instructions.

We have specifically tailored GPTutor’s prompts to enhance its
ability to explain and generate Sui-Move. This is intended to assist
developers in quickly grasping Sui Move development. For example,
by including the Move Fungible Coin Smart Contract Template in
the prompt as a reference, GPTutor can accurately generate and
modify Sui-Move smart contracts code related to Fungible Coins.
This is aimed at helping developers understand the workings of
Move contracts and expedite the development of their first Fungible
Coin smart contract.

4 FUTUREWORKS
In the future, we hope to further enhance GPTutor’s capabilities
with prompt engineering, enabling it to support a wider range of
contexts and even allowing it to switch prompts autonomously
based on the context. Additionally, we aim to improve the user
experience when it comes to editing prompts in GPTutor, such as
generating different responses to help users compare which prompt
works best [3]. Finally, we also intend to conduct practical research

https://www.youtube.com/watch?v=uTNXQuKrnKI
https://marketplace.visualstudio.com/items?itemName=gptutor.gptutor
https://marketplace.visualstudio.com/items?itemName=gptutor.gptutor


Eason Chen, Ray Huang, Justa Liang, Damien Chen, and Pierce Hung

on GPTutor’s Tutur capabilities, exploring how this language gen-
eration assistive tool can tutor developers in efficiently mastering
new technologies.

Last but not least, GPTutor welcomes contributions for custom
prompts, especially those related to new programming languages
or libraries. If you’re interested, please feel free to submit a Pull
Request on GitHub https://github.com/GPTutor/gptutor-extension.

ACKNOWLEDGMENTS
This work was supported by the Sui Foundation. Funding to attend
this conference was provided by the CMU GSA/Provost Conference
Funding.

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[2] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi Li. 2023.
GPTutor: a ChatGPT-powered programming tool for code explanation. arXiv
preprint arXiv:2305.01863 (2023).

[3] Eason Chen and Yuen-Hsien Tseng. 2022. A Decision Model for Designing NLP
Applications. In Companion Proceedings of the Web Conference 2022. 1206–1210.

[4] Juan Cruz-Benito, Sanjay Vishwakarma, Francisco Martin-Fernandez, and Ismael
Faro. 2021. Automated source code generation and auto-completion using deep
learning: Comparing and discussing current language model-related approaches.
AI 2, 1 (2021), 1–16.

[5] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

https://github.com/GPTutor/gptutor-extension

	Abstract
	1 Introduction
	2 Service Design
	3 Current Progress
	4 Future Works
	Acknowledgments
	References

