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Large Language Models (LLMs) are rapidly becoming commonplace tools for generating code solutions for complex programming
problems. Alongside their widespread availability, the adoption of code-generating LLMs has been driven by a myriad of code-related
features (e.g., self-debugging) that empower their ability to generate functionally correct code. Despite these recent advances, LLMs
remain largely incapable of solving many programming problems of significant complexity unless otherwise steered through human
feedback. In this paper, we uncover the strategies that professional programmers employ in steering code-generating LLMs toward
successful outcomes. We present findings from a study in which 38 professional programmers used natural language to steer GPT-4 in
generating solutions for programming problems of varying difficulty. We motivate our study design and analysis through the lens
of Socratic Feedback, an inversion of the popular Socratic Questioning paradigm that frames professional programmers as “model
teachers” to code-generating LLMs. Through an analysis of 80 conversational transcripts from interactions with GPT-4, we map
observed error-feedback pairs to four conceptual stages of interactive steering in the context of code generation: Understanding,
Planning, Implementation, and Testing. We ground our data analysis in these four stages and conclude by discussing their implications
for improving the performance of code-generating LLMs through combined lens of user experience and functional utility.
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1 INTRODUCTION

Recent advances in natural language processing (NLP) and automated code generation have combined to drive the
development of Large Language Models (LLMs) that can generate code via natural language prompts. Empirical studies
suggest that LLMs can provide significant gains to productivity and has transformed practices of daily programming.
Programmers have frequently relied on those publicly available LLMs (e.g. ChatGPT [21]) and coding assistants (e,g.
Copilot [7]) for code suggestion and brainstorming in their work and study.

Nonetheless, code-generating LLMs reportedly still struggle with intricate coding challenges that require a deep
understanding of the problem, task breakdown, and the nuanced application of algorithms and libraries within given
specification [3, 9, 23]. Recently, some advancements have revealed that newer LLMs possess a self-debugging ability [8,
∗Work completed during an internship at Amazon.
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23]. This lets them enhance code generation by iteratively analyzing errors from previous program attempts based
on unit test outcomes, akin to common trial-and-error strategy used by human programmers. Yet, entirely relying
on self-debugging capability comes with two major vulnerabilities. First, the model might erroneously pinpoint
underlying reason for code failure. Moreover, even if the model correctly identifies the failure, it may struggle with
generating contingent feedback to effectively steer the following code refinement. These obstacles account for the
modest performance improvements achieved by self-debugging frameworks in the context of complex programming
tasks, such as LeetCode’s medium and hard-level problems [8, 23].

In this paper, we conducted an empirical study that understands how professional programmers could steer a
self-debug capable model, GPT-41, to generate functionally correct code for programming problems that it failed to
solve alone. Specifically, we encouraged programmers to employ the Socratic feedback approach that is commonly
used in argumentation and tutoring. Instead of directly providing answers, this approach leverages targeted questions
or prompts to ignite critical thinking and empower learners to formulate their own solutions. This is akin to the
dynamic in college programming tutoring sessions, where the instructor offers incremental feedback corresponding to
the learner’s most recent attempt. Meanwhile, the learner is required to undergo several rounds of debugging efforts
before seeking additional feedback. Our study with 38 professional programmers found that GPT-4 is able to solve
originally failed competition-level programming problems with a few rounds of human Socratic feedback. Moreover,
through programmers’ self-annotations on the conversation log data, we uncovered a variety of error types that GPT-4
committed during both the instruction-following and self-debugging phases. We also identified a group of Socratic
feedback techniques that programmers employed to guide the Language Learning Model (LLM). Furthermore, we
analyzed programmers’ challenges in steering GPT-4 for coding tasks.

2 RELATEDWORK

2.1 LLM-enabled Code Generation

Recent studies [7, 15, 20, 22] suggest that incorporating code into training data enables general-purpose LLMs to generate
programs from natural language prompts or to complete incomplete code snippets. Alternatively, specialized models like
Codex [7], AlphaCode [? ], StarCoder [15], and Code LLAMA [22] have also been developed or fine-tuned specifically for
coding tasks. Though they have achieved SOTA performance on code generation benchmarks [7, 30], LLMs still exhibit
limited performance on medium and hard competition-level programming problems [20]. These complex problems
typically require a programmer’s adept skills in understanding, planning, and implementing sophisticated reasoning
tasks.

To address this limitation, some works used prompt-based techniques to boost LLMs’ reasoning for correct code.
For example, strategies like the chain-of-thought and tree-of-thought [? ] were employed to prompt models to break
down the planning process into manageable intermediate subproblems. Additionally, self-debugging or reflection
techniques [8, 23? ] encouraged models to analyze their own outputs and divide the debugging process into stages
of code explanation and self-feedback generation. Then LLMs refined their planning and execution grounded on
the insights obtained from their self-generated feedback. Besides stimulating models’ self-reflection, some works
used human prompts to support the code refinement process. For example, Austin et al. [3] explored human-model
collaborative coding on MBPP dataset. They found that LLMs can improve or correct code based on human feedback,
benefiting from human clarification of under-specified prompts and correction of small context errors. Apart from

1We used Advanced Data Analysis plugin of GPT-4
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incorporating human feedback as prompts, Chen et al. [6] improved CodeGen using imitation learning from human
language feedback, where human feedback is used to learn a refinement model that generates modification from human
feedback and previous incorrect code.

Our study setting echoes Austin’s work, where programmers engage in a dialogue, offering iterative natural language
feedback to LLMs. However, our focus diverges as we concentrate on a self-debug capable model and tackle competition-
level problems, which are notably more complex than those found in the MBPP dataset. Besides, we systematically
identified the error and human feedback strategy taxonomy and analyzed GPT-4’s steerability in the context of code
problem-solving.

2.2 SocraticQuestioning

Different from conventional prompting strategies which ‘teach’ LLMs to interpolate existing knowledge, Socratic
reasoning ‘coaches’ LLMs and stimulates them to extrapolate new knowledge. Chang et al. [5] investigated the
application of diverse Socratic methods to craft effective prompt templates for interacting with LLMs. By integrating
techniques like definition, elenchus, dialectic, maieutics, and counterfactual reasoning, they showcased their application
in tasks related to inductive, deductive, and abductive reasoning. Besides, several self-directed Socratic questioning
frameworks [? ? ] were proposed to encourage LLMs to recursively break down complex reasoning problems into
solvable sub-problems.

On the other hand, several works attempted to use LLMs to generate Socratic questions in dialogue that guides human
learners to solve challenging problems such as math word and code problems [1, 2, 24]. For example, AI-Hossami et
al. [1] developed a benchmark dataset that tests LLM ability to help a novice programmer fix buggy solutions to simple
coding problems via Socratic questioning. They also found that while GPT-4 performed much better than GPT-3.5, its
precision and recall still fall short of human programmer’s abilities.

To the best of our knowledge, our research is pioneering in investigating the application of human Socratic feedback
to improve the code generation capabilities of LLMs. We discern the various forms of Socratic feedback employed by
human programmers during guiding conversations and evaluate their efficacy in addressing existing errors.

3 A STUDY OF STEERING BEHAVIORWITH CODE-GENERATING LANGUAGE MODELS

Code-generating LLMs can be prompted through natural language to generate solution implementations for complex
programming problems. Recent feature extensions to commercial LLMs reportedly improve their ability to generate
code with processes, such as self-debugging, that allow these models to iteratively debug and correct its generated
solutions. However, even in the presence of these features, studies have continued to find that the code-generating LLMs
typically achieve successful outcomes primarily through multi-turn conversation rather than single-turn conversation.
Research has specifically indicated that the multi-turn nature of these conversations is driven by code-generating LLMs
being unable to “self-correct” its errors without some form of human intervention, direction, or feedback [12].

3.1 ResearchQuestions

Code-generating LLMs must be steered with natural language in order to generate solutions that adequately solve
the problem. Within this use-case, “steering” can be characterized as a dyadic sequence of generative errors and
human feedback. We hypothesize that there exists common sequences of steering behavior steering strategies used by
programmers
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Our study aims to uncover the steering strategies employed by professional programmers generative errors, Our
study aims to address the following four research questions:

(1) What types of generative errors are observed by programmers when using code-generating LLMs?
(2) What types of feedback are used by programmers to resolve errors produced by code-generating LLMs?
(3) What types of steering strategies do programmers employ?
(4) What empirical lessons and user challenges we can learn?

3.2 Study Design

We designed and conducted an empirical study in which professional programmers used the Generative Pre-trained
Transformer 4 (GPT-4) model to generate functionally correct Python code for coding problems related to algorithms
and data structures. We chose GPT-4 on the basis of its ease-of-use, availability, and technical maturity in comparison
to other alternatives that were available at the time of our study (e.g., Meta’s Llama [26]). Furthermore, the “Code
Interpreter” plugin2 [18] allows end-users to instruct the model to execute and evaluate code via a Python interpreter
that runs in a sandboxed execution environment. Through this expanded infrastructure, GPT-4 can handle prompts
that instruct it to self-debug its code (i.e., modifying its generated code on the basis of errors that occurred during the
program’s execution or testing) [8]. Along these functionalities necessary for studying code generation, our model
choice is driven by prior work that studied self-debugging with earlier models (e.g., GPT 3.5 Turbo) and acknowledged
GPT-4 as an important area of study for future research in self-debugging [14].

3.2.1 A Curated Dataset of Unseen Programming Problems. By design, our study aims to study aspects of multi-turn
conversation that only take place when a code-generating LLM fails to produce a satisfactory solution in its first
response to the user. Benchmarking datasets are recognized as the gold standard for evaluating code generation
functionality [3, 7, 16, 31]. However, the widespread availability of these datasets allows them to be easily consumed
as potential use-cases for fine-tuning. In order to maximize GPT-4’s inability to produce solutions in a single-turn,
we curated a dataset of 110 recently created programming problem descriptions and solutions from LeetCode and
CodeForce. Dataset creation was initiated by sorting LeetCode’s available problems by their creation date and sampling
a total of 100 problems across its difficulty category tags (i.e., 30 "Easy" problems, 40 "Medium" problems, and 30 "Hard"
problems). Through a pilot study, we observed that GPT-4 was noticeably performant in solving LeetCode’s “Easy”
problems through single-turn conversation. We therefore chose to augment our dataset with an additional set of 10
problems from CodeForce that were analogous to LeetCode’s “Easy” problems and that we verified could not be solved
in a single turn. At the time of study, the dataset included a total of 110 unique problems spanning 39 algorithmic topics.

3.2.2 A One-Shot Prompt Template for Generating Code. Prior studies have illustrated that people can encounter a
myriad of challenges related to prompt engineering with code-generating LLMs [13]. This is particularly true for
“non-AI experts” who may fail to understand how to engage in prompt engineering [29]. In order to help participants
initiate conversations with GPT-4, we provided participants with a prompt template with predetermined placeholders
for various aspects of the coding problem, including its description, function signature, test cases, and constraints.
The template also included an “instructions” section that described how the LLM should outline the step-by-step plan
of its planned solution, provide the implementation of this solution in Python code, evaluate the success of provided
test cases, and engage in an iterative process of self-debugging if any of the test cases fail. In order to avoid issues

2The “Code Interpreter” plugin was renamed to “Advanced Data Analysis” with the ChatGPT Enterprise announcement on August 28, 2023. [19]
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related to streaming context length, we designed the prompt to engage in no more than five iterations of self-debugging.
The template concluded with a statement that asked the model to report the five types of human feedback that would
be most beneficial for improving the generated solution, regardless of whether the solution successfully passed all
provided unit tests.

3.3 Aligning the Socratic Method to Human Feedback

In order to ease the burden of communicating with GPT-4, we designed four unique types of human feedback that draw
inspiration from the Socratic method. For brevity, we refer to these types of feedback simply as “Socratic feedback”.
Below, we describe how each type of feedback draws inspiration from a particular methodological abstraction of the
Socratic method [5] while simultaneously mapping to an existing prompting technique that has already been studied in
the context of code-generating LLMs. All templates were presented to participants being “optional”, and they were
encouraged to communicate with GPT-4 however they best see fit. Furthermore, templates were framed as “examples”
of communication while simultaneously illustrating the ways in which GPT-4 might be prompted.

• Definitive Feedback: Definitive feedback is a reflection of the Method of Definition abstraction that focuses on
understanding “What is the object?” [4]. In our scenario, we prepared a template that prompts participants to
give feedback on problem requirements that GPT-4 does not satisfy.

• Elenctic Feedback: Elenctic feedback draws inspiration from the Socratic method’sMethod of Elenchus and aims
to help learner “develop a deeper understanding of the validity of the reasons and conclusion, and to identify any
potential weaknesses or flaws in the arguments” [5]. We prompted our participants to offer Elenctic feedback by
identifying flaws in the GPT-4’s program.

• Dialectic Feedback: Dialectic feedback involves “exploring opposing viewpoints to arrive at a deeper under-
standing of a subject” [11]. A fitting comparison for opposing viewpoints in coding tasks is the occurrence of
failed tests. Therefore, we provide templates that prompt participants to reiterate or explain failed tests.

• Maieutic Feedback: Maieutic feedback aims to clue students in bringing forth their understanding [5]. As such,
we provided templates that encouraged participants to give hints to GPT-4.

3.4 Study Platform

OpenAI allows users to interface with GPT-4 either through the ChatGPT web interface or through a standard web API.
While each type of interface provides the same set of general functionality, the GPT-4 plugin can only be used via the
ChatGPT web interface. This limitation drove us to develop a web application that navigated participants to complete
task (Section 3.5) remotely. The front-end was developed using React, while the back-end utilized the Flask framework.
We used DynamoDB to for data logging.

This web application comprises five distinct pages dedicated to background surveying, problem exploration and
selection, searching for ground truth solutions, interacting with the model, and annotating conversations. Participants
were instructed to view a tutorial video to familiarize themselves with the website’s usage.

3.5 Task Procedure

Study participation was initiated by providing participants with a URL to our study platform, which allowed them to
asynchronously participate at their own leisure. Upon entering the study website, participants were asked to complete a
pre-study survey. After completing the survey, participants were instructed to watch a brief 5-minute tutorial video that
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Step 1. Select Coding Problem 

Step 2. Generate Solution

Step 3. Annotate Conversation

Pre-Study Survey

Tutorial Video

Study Task

Study Onboarding

Fig. 1. An overview of the study’s procedure.

described the study’s steps. Participants were then asked to identify a problem to begin solving with OpenAI’s GPT-4.
Upon problem selection, participants were provided with the problem’s source webpage (e.g., on LeetCode) in a separate
browser tab, asked to find and review the problem’s known solution, and confirm their understanding of the solution’s
implementation, which they should steer GPT-4 toward solving. After providing confirmation, participants were asked
to open the ChatGPT interface and initiate a conversation using the platform’s provided self-debugging prompt template
for starting conversations. Participants were asked to iteratively steer the GPT-4 model as they see fit. Participants
were instructed to stop conversing with GPT-4 if the system generated a correct solution or if the system had failed to
generate a solution after 10 iterations of conversation. After reaching either of these exit conditions, participants were
asked to conclude the study by collecting qualitative and quantitative annotation data about conversation that they had
with GPT-4.

3.6 Recruitment and Participants

We employed snowball sampling [17] to facilitate study recruitment. Our recruitment campaign was initiated by posting
study advertisements in a team-based instant messaging application at a large technology corporation. Advertisements
for participation were specifically targeted at company-wide communication channels that focused explicitly on practical
applications of LLMs. The study platform facilitated participation was permitted for a duration of four weeks during
August 2023.

A total of 38 individuals were recruited through our recruitment campaign. The participants held various roles such
as software development engineer, software architect, research scientist, and software development engineer intern,
with the majority boasting substantial programming expertise. Furthermore, a significant portion of the participants
had a familiarity level of intermediate or higher with both algorithms and LLM.

3.7 Study Data

We collected the following types of data in our study:

• Demographic Data. We employed a pre-study survey that inquired about their job title, programming back-
ground, proficiency with algorithms and data structures, and familiarity with large language models.
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• Conversation Log Data. Each study task concluded by asking participants to provide the Share Chat URL
that allows others to view their conversation in the web browser. From this rendered webpage, we extract the
conversational transcripts between each participant and ChatGPT.

• Message-Level Annotation Data. For We collect message-level annotations For each human turn in the
conversation, participants were asked to describe their steering strategy used in the turn and rated the perceived
effectiveness of their feedback in aiding the model to rectify errors from the preceding AI turn. For every AI turn,
participants were prompted to detail the primary errors leading to program failure during both the instruction-
following and self-debug phases. They also evaluated the accuracy level of the final program showcased in the
AI’s response. On a broader dialog scale, participants rated the general easiness of the entire steering process.
Furthermore, they provided insights into their overarching methodology for choosing strategies during the
conversation and shared their personal perceptions of instances where their strategies either aided or hindered
the model’s modifications.

• Conversation-Level Annotation Data. We also asked our participants to describe their overall steering strategy
used in each conversation with GPT-4. Plus, we also asked them to rate the perceived easiness of steering for
the conversation, and their perception of when their feedback started helping the model get closer to the right
answer or even make a worse generation. Lastly, we asked participants to describe their challenges encountered
in steering GPT-4.

3.8 Analysis Method

3.8.1 Thematic analysis of error type. To address RQ1, two researchers carried out a thematic analysis of the annotations
made by participants about the ’instruction-following errors’ and ’self-debug errors’ that arose during each unsuccessful
AI turn. Specifically, we drew on the axial and iterative coding methodology as seen in previous turn-level conversation
analyses [10, 25]. In the initial phase, each annotator reviewed all turn-level error annotation data and perform
open coding upon them. For each unsuccessful AI turn that received error annotation, annotators also revisited the
corresponding AI message within conversation log data and examine if the participant annotation appropriately captured
all the errors present. If not, the code was adjusted to better align with the actual AI message errors. After developing
the initial codebook, annotators sat together to discuss the codes of instruction-following error and self-debug error and
reached a consensus in the preliminary version of the codebook. Then, they reannotated the errors in each unsuccessful
AI turn with the refined codebook.

3.8.2 Thematic analysis of steering strategy type. In addressing RQ2, we undertook a similar iterative thematic analysis
focused on annotations detailing the human-steering strategy during each human turn. Annotators were tasked with
coding based on the subsequent queries: (1) What type of information did the human-steering feedback aim to provide to

model? (2) Which Socratic questioning approach did the human-steering feedback resonate with?. Each annotator first
developed their own codebook independently and then collaborated to refine the codebook. They then reannotated
each human-steering message with the refined codebook.

3.8.3 Qualitative analysis of steering strategy effectiveness. We conducted qualitative analysis on participants’ open-
ended feedback regarding their selection of steering strategies during each conversation, as well as their individual
perspectives on the instances where their steering feedback either assisted or failed to benefit the model. While analyzing,
we also revisited the conversation log data to understand the specific context of each interaction. Our qualitative
examination sought to address these key questions : (1) What distinguishes successful conversations from the unsuccessful
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Table 1. Themes and categories of code generation issues reported by participants.

Theme Code Category “The model ...”

Understand IU1 Consideration ... fails to consider an explicit solution requirement.
IU2 Interpretation ... fails to interpret an explicit solution requirement.

Plan
IP1 Approach Optimization ... fails to produce a solution that is efficient.
IP2 Approach Application ... fails to produce a solution that applies a suitable approach.
IP3 Approach Reversion ... fails to produce a solution that uses hasn’t already been suggested.
IP4 Approach Retention ... fails to produce a solution that uses an alternative approach.

Implement II1 Error Location ... generates a solution that has errors in a particular code region.
II2 Error Edge-Case ... generates a solution that fails with a particular edge case.

Evaluate IE1 Test Generation ... evaluates its solution with incorrect self-generated test case requirements.
IE2 Test Contradiction ... evaluates its solution with contradictory test case requirements.

ones? (2) How do participants select their steering strategies during the dialogue? (3) What practical insights can we glean

about effective Socratic steering?

4 PRELIMINARY RESULTS

The study’s 38 participants generated a total of 80 conversations with OpenAI’s Code Interpreter through the study’s
online platform. On average, each conversation included 2.4 messages (SD=1.8) sent by the user. When broken down by
problem difficulty, participants provided 1.33 (SD=1.63) feedback for easy problems, 2.8 (SD=1.91) for medium problems,
and 2.0 (SD=1.52) for hard problems.

On average, the duration of each conversational phase was 26 minutes. Alongside the conversational period,
participants spent an average of 7 minutes completing the pre-conversation problem selection phase and an average of
10 minutes completing the post-conversation annotation phase The total duration for all three stages was, on average,
42.4 minutes. On average, participants gave 2.35 (SD=1.83) pieces of feedback per conversation. When broken down by
problem difficulty, participants provided 1.33 (SD=1.63) feedback for easy problems, 2.8 (SD=1.91) for medium problems,
and 2.0 (SD=1.52) for hard problems.

The distribution of results of steering conversation is shown in Figure 2. Participants collectively assisted the Code
Interpreter in resolving 65% (33 out of 51) coding challenges it couldn’t tackle on its own. On average, the discussions
spanned 2.78 (SD=2.36) turns, with successful interactions averaging 1.92 (SD=1.38) turns. This suggests that even a
slight human intervention using the Socratic feedback method can guide the Code Interpreter toward accurate solutions
for problems it initially found challenging.

Among the 80 tasks completed by our participants, we observe that GPT-4 generated a correct solution for 29
problems (36%). Therefore, for this section, we limit our analysis to the remaining 51 tasks that include examples of
steering behavior.

4.1 Error Type Taxonomy

Our thematic analysis identified the following error types at the instruction-following and self-debugging stages (Table
1 and 2).

4.2 Socratic feedback Taxonomy

Our thematic analysis identified the following steering strategy (Table 3) types that human participants used in our
study.
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Fig. 2. Distribution of results of steering conversation

Table 2. Categories of self-debugging errors.

Code Category “The model’s self-debugging procedure fails to ...”
[SD1] Understanding ... understand the requirements for its generated code.
[SD2] Identification ... identify an issue in its generated code.
[SD3] Correction ... correct an identified issue in its generated code.
[SD4] Repetition ... execute without repetitively debugging its generated code.
[SD5] Evaluation ... evaluate correctness with appropriate unit tests.

Table 3. Categories of human feedback.

Theme Category “The programmer provided feedback that ...” Socratic method

Evaluate
Test Reiteration (A1) ... reiterates an existing test case requirement. Elenchus
Test Definition (A2) ... provides a new test case requirement. Dialectic
Test Revision (A3) ... revises an existing test case requirement. Elenchus

Implement Programmatic Error (B1) ... resolves programmatic issues in a specific region of the generated code. Elenchus
Efficiency Error (B2) ... resolves efficiency issues in a specific region of the generated code. Elenchus

Understand
Requirement Reiteration (C1) ... reiterates existing solution requirements. Definition
Requirement Clarification (C2) ... clarifies existing solution requirements. Definition

Plan
Approach Orientation (D1) ... reframes the approach for solving the problem. Maieutics
Approach Instruction (D2) ... outlines a series of steps for solving the problem. Maieutics
Approach Reversion (D3) ... reverts the generated solution to a previous version. Recollection

4.3 Preliminary lessons about effective steering

LLMs are recognized for their enhanced performance on complicated reasoning tasks when utilizing reasoning decom-
position methods such as chain-of-thought [27] and tree-of-thought [28]. Yet, a significant hurdle for these automated
decomposition techniques is their potential inability to accurately decompose a problem, often due to challenges in
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establishing a proper understanding or inductive bias. In our study, we observed that human-guided decomposition
that converts the model into their familiar problem could effectively guide the model toward the correct plan, especially
when it grappled with formulating an appropriate algorithmic strategy (#17, #26, #27), though the model may still
encounter specific implementation issue (#8, #26, #27). For instance, in example #27, the model struggled to discern
the dynamic programming aspect of the problem. Participant P18 advised the model to "consider backtracking-style
dynamic programming and apply the memorization technique for algorithm implementation". This guidance led the model
to produce a reasonably structured program. While there were some implementation errors, further hints regarding
rectifying these issues enabled the model to derive the correct solution.

Identifying the programming stage that the model struggles with is essential for successful steering. Writing
an accurate code needs programmers to go through multiple stages correctly, including understanding, planning,
implementation, and testing. We found that our participants are more likely to make a successful steering if they give
relevant feedback that helps the model conquer the hurdles faced at the struggling stage. For example, in #2, the model
initially misunderstood a problem condition (P6: “Problem means we can keep deleting the closest occurrence of c to the

left of i if there exists one, while the model thinks it can only delete once”). P8’s initial feedback for cluing the model about
the correct algorithm type did not help the model identify the misunderstanding and it carried the misunderstanding
onto the new algorithmic plan. P8 then clarified the condition that the model misunderstood which effectively steered
the model to come up with a program with minimal implementation issues. As an opposite example, P27 at example #22
kept cluing the model with the bug location, while not explicitly pointing out that the model overlooked the absolute
sign in the condition “the value of the partition is |max(nums1) - min(nums2)|”, which made the discourse finally failed.

4.4 User challenges

4.4.1 Challenges and Barriers to Effective Steering. Our qualitative analysis suggests that participants generated steering
feedback based on present error, personal experience and problem nature. Participants described several key factors
that impact their steering strategy choice during conversation. 18 participants mentioned that they used a “greedy”
approach to determine what feedback to give mainly based on errors in model’s last attempt and the effectiveness of
prior steering attempts. For example, P8 said:

“My approach was entirely driven by how I see improvements with the error at hand. I’m not at able to predict

what new errors might surface with my new suggestions, so this is the only way that I can imagine doing it”.

Similarly, P12 said he had to do a few back-and-forth trials to find out what model actually struggled with:

“My natural approach is one that centers around examples that say ‘Here’s what’s right’ or ‘Here’s what’s

wrong’ in the last answer. I tried that for a few back-and-forth instances, and if I hit a roadblock, I assumed

that Code Interpreter and I must be on two different pages. Ultimately, this was what drove me to provide a

more thorough description of the problem after having no success in getting Code Interpreter to identify the

issues”.

Only one participant (P19) clearly said that he “planned how to steer at the beginning of conversation”. In addition, 7
participants mentioned that they relied on prior programming experience to choose steering strategy. For example,
P24 said “It’s very similar to my everyday rubber duck debugging. I gave model feedback that I think would guide

myself best when I faced the same error”. Besides, 3 participants drew parallels between the steering process and their
experiences with programming tutoring in college. For example, P16 said “It (steering) just like talking to a student in
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your programming class. Confirm the correct part that the model does, points out the failure part, asks it to fix the failure

part with some suggestion on how to fix it”. Lastly, 8 participants thought problem nature affected how they steered the
model. In particular, 4 participants emphasized they intentionally gave clear step-by-step instruction because solving
those problems needs “clever tricks” (P20) or “complicated implementation” (P27), and they assumed GPT-4 cannot
sort them out independently. On the other hand, 4 participants conveyed they primarily depended on the self-debug
capability of GPT-4 since “the solution looks straightforward” (P2).
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